
1

C++ Programming: From Problem Analysis to Program Design, Eighth Edition

Chapter 1

An Overview of Computers and Programming Languages

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain

product or service or otherwise on a password-protected website for classroom use.

2

Objectives (1 of 2)

• In this chapter, you will:

• Learn about different types of computers

• Explore the hardware and software components of a computer system

• Learn about the language of a computer

• Learn about the evolution of programming languages

• Examine high-level programming languages

• Discover what a compiler is and what it does

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

3

Objectives (2 of 2)

• Examine a C++ program

• Explore how a C++ program is processed

• Learn what an algorithm is and explore problem-solving techniques

• Become aware of structured design and object-oriented design programming
methodologies

• Become aware of Standard C++, ANSI/ISO Standard C++, C++11, and C++14

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

4

Introduction

• Without software, a computer is useless

• Software is developed with programming languages

• C++ is a programming language

• C++ is suited for a wide variety of programming tasks

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

5

A Brief Overview of the History of Computers (1 of 3)

• Early calculation devices

• Abacus

• Pascaline

• Leibniz device

• Jacquard’s weaving looms

• Babbage machines: difference and analytic engines

• Hollerith machine

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

6

A Brief Overview of the History of Computers (2 of 3)

• Early computer-like machines

• Mark I

• Electronic Numerical Integrator and Calculator (ENIAC)

• Von Neumann architecture

• Universal Automatic Computer (UNIVAC)

• Transistors and microprocessors

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

7

A Brief Overview of the History of Computers (3 of 3)

• Categories of computers

• Mainframe computers

• Midsize computers

• Micro computers (personal computers)

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

8

Elements of a Computer System

• Two main components

• Hardware

• Software

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

9

Hardware

• Central processing unit (CPU)

• Main memory (MM) or random access memory (RAM)

• Secondary storage

• Input/output devices

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

10

Central Processing Unit and Main Memory (1 of 4)

• Central processing unit

• Brain of the computer

• Most expensive piece of hardware

• Operations

- Carries out arithmetic and logical operations

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

11

Central Processing Unit and Main Memory (2 of 4)

FIGURE 1-1 Hardware components of a computer and main memory

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

12

Central Processing Unit and Main Memory (3 of 4)

• Random access memory (or main memory) is directly connected to the CPU

• All programs must be loaded into main memory before they can be executed

• All data must be brought into main memory before it can be manipulated

• When computer power is turned off, everything in main memory is lost

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

13

Central Processing Unit and Main Memory (4 of 4)

• Main memory is an ordered sequence of memory cells

• Each cell has a unique location in main memory, called the address of the cell

• Each cell can contain either a programming instruction or data

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

14

Secondary Storage

• Secondary storage: device that stores information permanently

• Examples of secondary storage

• Hard disks

• Flash drives

• CD-ROMs

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

15

Input/Output Devices

• Input devices feed data and programs into computers

• Keyboard

• Mouse

• Scanner

• Camera

• Secondary storage

• Output devices display results

• Monitor

• Printer

• Secondary storage

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

16

Software

• Software are programs written to perform specific tasks

• System programs control the computer

• Operating system monitors the overall activity of the computer and provides services
such as:

- Memory management

- Input/output activities

- Storage management

• Application programs perform a specific task

• Word processors

• Spreadsheets

• Games

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

17

The Language of a Computer (1 of 4)

• Analog signals: continuously varying continuous wave forms

• Digital signals: sequences of 0s and 1s

• Machine language: language of a computer

• A sequence of 0s and 1s

• Binary digit (bit): the digit 0 or 1

• Binary code (binary number): a sequence of 0s and 1s

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

18

The Language of a Computer (2 of 4)

• Byte: a sequence of eight bits

• Kilobyte (KB): 210 bytes = 1024 bytes

• ASCII (American Standard Code for Information Interchange)

• 128 characters

• A is encoded as 1000001 (66th character)

• The character 3 is encoded as 0110011 (51st character)

• Number systems

• The decimal system (base 10) is used in our daily life

• The computer uses the binary (or base 2) number system

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

19

The Language of a Computer (3 of 4)

TABLE 1-1 Binary Units

Unit Symbol Bits/Bytes

Byte 8 bits

Kilobyte KB 210 bytes = 1024 bytes

Megabyte MB 1024 KB = 210 KB = 220 bytes = 1,048,576 bytes

Gigabyte GB 1024MB = 210 MB = 230 bytes = 1,073,741,824 bytes

Terabyte TB 1024 GB = 210 GB = 240 bytes = 1,099,511,627,776 bytes

Petabyte PB 1024 TB = 210 TB = 250 bytes = 1,125,899,906,842,624 bytes

Exabyte EB 1024 PB = 210 PB = 260 bytes = 1,152,921,504,606,846,976 bytes

Zettabyte ZB 1024 EB5 210 EB = 270 bytes = 1,180,591,620,717,411,303,424 bytes

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

20

The Language of a Computer (4 of 4)

• Unicode is another coding scheme

• 65,536 characters

• Two bytes (16 bits) to store a character

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

21

The Evolution of Programming Languages (1 of 3)

• Early computers were programmed in machine language

• To calculate wages = rate * hours in machine language:

100100 010001 //Load

100110 010010 //Multiply

100010 010011 //Store

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

22

The Evolution of Programming Languages (2 of 3)

• Assembly language instructions are mnemonic

• Instructions are written in an easy-to-remember form

• An assembler translates a program written in assembly language into machine
language

• Using assembly language instructions, wages = rate * hours can be
written as:

LOAD rate

MULT hours

STOR wages

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

23

The Evolution of Programming Languages (3 of 3)

• High-level languages include Basic, FORTRAN, COBOL, C, C++, C#, Java, and
Python

• Compiler: translates a program written in a high-level language into machine
language

• In C++, the weekly wages equation can be written as:

wages = rate * hours;

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

24

Processing a C++ Program (1 of 4)

#include <iostream>

using namespace std;

int main()

{

cout << "My first C++ program." << endl;

return 0;

}

Sample Run:

My first C++ program.

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

25

Processing a C++ Program (2 of 4)

• Steps needed to process a C++ program

1. Use a text editor to create the source code (source program) in C++

2. Include preprocessor directives

• Begin with the symbol # and are processed by the preprocessor

3. Use the compiler to:

• Check that the program obeys the language rules

• Translate the program into machine language (object program)

4. Use an integrated development environment (IDE) to develop programs in a high-
level language

• Programs such as mathematical functions are available

• The library contains prewritten code you can use

• A linker combines object program with other programs in the library to create executable
code

5. The loader loads executable program into main memory

6. The last step is to execute the program

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

26

Processing a C++ Program (3 of 4)

• IDEs are quite user friendly

• Compiler identifies the syntax errors and also suggests how to correct them

• Build or Rebuild is a simple command that links the object code with the resources
used from the IDE

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

27

Processing a C++ Program (4 of 4)

FIGURE 1-2 Processing a C++ program

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

28

Programming with the Problem Analysis–Coding–Execution Cycle

• Programming is a process of
problem solving

• An algorithm is a step-by-step
problem-solving process

• A solution is achieved in a finite
amount of time

FIGURE 1-3 Problem analysis–coding–execution cycle

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

29

The Problem Analysis–Coding–Execution Cycle (1 of 5)

• Step 1: Analyze the problem

• Outline the problem and its requirements

• Design steps (algorithm) to solve the problem

• Step 2: Implement the algorithm

• Implement the algorithm in code

• Verify that the algorithm works

• Step 3: Maintain the program

• Use and modify the program if the problem domain changes

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

30

The Problem Analysis–Coding–Execution Cycle (2 of 5)

• Analyze the problem using these steps:

• Step 1: Thoroughly understand the problem and all requirements

• Step 2: Understand the problem requirements
• Does program require user interaction?

• Does program manipulate data?

• What is the output?

• Step 3: If complex, divide the problem into subproblems
• Analyze and design algorithms for each subproblem

• Check the correctness of algorithm

• Test the algorithm using sample data

• Some mathematical analysis might be required

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

31

The Problem Analysis–Coding–Execution Cycle (3 of 5)

• Once the algorithm is designed and correctness is verified

• Write the equivalent code in high-level language

• Enter the program using a text editor

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

32

The Problem Analysis–Coding–Execution Cycle (4 of 5)

• Run code through the compiler

• If compiler generates errors

• Look at code and remove errors

• Run code again through compiler

• If there are no syntax errors

• Compiler generates equivalent machine code

• Link machine code with the system’s resources

• Performed by the linker

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

33

The Problem Analysis–Coding–Execution Cycle (5 of 5)

• Once compiled and linked, the loader can place program into main memory for
execution

• The final step is to execute the program

• Compiler guarantees that the program follows the rules of the language

• Does not guarantee that the program will run correctly

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

34

Example 1-1 (1 of 2)

• Design an algorithm to find the perimeter and area of a rectangle

• The perimeter and area of the rectangle are given by the following formulas:

perimeter = 2 * (length + width)

area = length * width

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

35

Example 1-1 (2 of 2)

• Algorithm

• Get the length of the rectangle

• Get the width of the rectangle

• Find the perimeter with this equation:

perimeter = 2 * (length + width)

• Find the area with this equation:

area = length * width

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

36

Example 1-5 (1 of 4)

• Calculate each student’s grade

• There are 10 students in a class

• Each student has taken five tests

• Each test is worth 100 points

• Design algorithms to:

• Calculate the grade for each student and class average

• Find the average test score

• Determine the grade

• Use the provided data: students’ names and test scores

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

37

Example 1-5 (2 of 4)

• Algorithm to determine the average test score

• Get the five test scores

• Add the five test scores
- The sum of the test scores is represented by sum

- Suppose average stands for the average test score:

average = sum / 5;

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

38

Example 1-5 (3 of 4)

• Algorithm to determine the grade:

if average is greater than or equal to 90

grade = A

otherwise

if average is greater than or equal to 80 and less than 90

grade = B

otherwise

if average is greater than or equal to 70 and less than 80

grade = C

otherwise

if average is greater than or equal to 60 and less than 70

grade = D

otherwise

grade = F

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

39

Example 1-5 (4 of 4)

• Main algorithm is presented below:

1. totalAverage = 0;

2. Repeat the following for each student:

- Get student’s name

- Use the algorithm to find the average test score

- Use the algorithm to find the grade

3. Update totalAverage by adding current student’s average test score

4. Determine the class average as follows:
classAverage = totalAverage / 10

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

40

Programming Methodologies

• Two popular approaches to programming design

• Structured

• Object-oriented

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

41

Structured Programming

• Structured design

• Involves dividing a problem into smaller subproblems

• Structured programming

• Involves implementing a structured design

• The structured design approach is also called:

• Top-down (or bottom-up) design

• Stepwise refinement

• Modular programming

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

42

Object-Oriented Programming (1 of 3)

• Object-oriented design (OOD)

• Identify components called objects

• Determine how objects interact with each other

• Specify relevant data and possible operations to be performed on that data

• Each object consists of data and operations on that data

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

43

Object-Oriented Programming (2 of 3)

• An object combines data and operations on the data into a single unit

• A programming language that implements OOD is called an object-oriented
programming (OOP) language

• To design and use objects, you must learn how to:

• Represent data in computer memory

• Manipulate data

• Implement operations

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

44

Object-Oriented Programming (3 of 3)

• To create operations:

• Write algorithms and implement them in a programming language

• Use functions to implement algorithms

• Learn how to combine data and operations on the data into a single unit called
a class

• C++ was designed to implement OOD

• OOD is used with structured design

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

45

ANSI/ISO Standard C++

• C++ evolved from C

• C++ designed by Bjarne Stroustrup at Bell Laboratories in early 1980s

• Many different C++ compilers were available

• C++ programs were not always portable from one compiler to another

• In mid-1998, ANSI/ISO C++ language standards were approved

• Second standard, called C++11, was approved in 2011

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

46

Quick Review (1 of 3)

• A computer is an electronic device that can perform arithmetic and logical
operations

• A computer system has hardware and software components

• The central processing unit (CPU) is the brain

• Primary storage (MM) is volatile; secondary storage (e.g., disk) is permanent

• The operating system monitors overall activity of the computer and provides services

• There are various kinds of languages

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

47

Quick Review (2 of 3)

• Compiler: translates high-level language into machine code

• Algorithm:

• Step-by-step problem-solving process

• Arrives at a solution in a finite amount of time

• Problem-solving process

1. Analyze the problem and design an algorithm

2. Implement the algorithm in code

3. Maintain the program

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

48

Quick Review (3 of 3)

• Structured design

• Problem is divided into smaller subproblems

• Each subproblem is solved

• Combine solutions to all subproblems

• Object-oriented design (OOD) program: a collection of interacting objects

• Object: data and operations on those data

© 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service

or otherwise on a password-protected website for classroom use.

