
Computer programming (STQS1313)

Sem 2, 2020/2021

Notes - String class and C-strings

There are two ways of creating a string:

 string class; example:

 string test = “abcd”;

 character string (C-string): array of characters terminated by a special end-of-string marker called

the NULL character; example:

 char test[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘\0’}; or
 char test[5] = “abcd”;

This is some introduction about these two topics taken from the book by Bronson:

Manipulating strings stored as C-strings can be time consuming. This is especially true for applications

requiring numerous string operations, such as inserting, searching, and/or deleting characters in an existing

string.

The reason is that each time a string is lengthened by adding characters, a new and larger array must be

created, and removing characters requires shifting characters to fill the empty spaces left by deleted

characters, with adjustment of the end-of-string null character. Searching for specific characters in a string

requires nested loops.

To circumvent the coding required for these types of operations, C++ provides the string class as part of the

standard C++ library. This class provides an expanded set of class functions, including easy insertion and

removal of characters from a string, automatic string expansion when a string’s original capacity is

exceeded, string contraction when characters are removed from a string, and range checking to detect

invalid character positions. In many ways, the strings created from the string class can also be manipulated

by using the array techniques suitable for C-strings. The main difference is that string class strings aren’t

terminated with a null character, and the string class provides many useful functions for operating on

strings.

Exception handling is a means of error detection and processing that has gained increasing acceptance in

programming technology. It permits detecting an error at the point in the code where the error has occurred

and provides a means of processing the error and returning control to the line that generated the error. As

you also see, although error detection and code correction are possible by using if statements and functions,

exception handling is one more useful programming tool for validating user input.

We are going to learn a few things in this topic, which are:

 string class

 background

 string class functions

 string input and output

 string processing

 character manipulation methods

 C-strings

 background

 C-String Input and Output

 C-string processing

 C-string manipulation functions

 character-handling functions

I) STRING CLASS

Background

1) Requires a standard library: the string class. So, we need to have

 #include<string>

2) Storage area of data is called an object rather than a variable.

3) From the line

 string test = “abcd”;

the abcd is called a string literal, string value, string constant, or simply a string.

4) The process of creating a string object, as shown above, is also called instantiating a string

object.

5) The quotation marks indicate the beginning and ending points of the string and are never stored

with the sting.

6) The first character in a string is always designated as position 0.

String class functions

1) In a class, functions are formally referred to as methods.

2) the methods that perform the tasks of creating and initialising are called constructor methods,

or just constructors.

3) examples of constructor (from Bronson’s book):

 Code 64

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 // Seven ways to instantiate (create) a string object

 string str1; // create an empty string named str1

 string str2("Good morning");

 string str3 = "Hot Dog";

 string str4(str3);

 string str5(str4, 4);

 string str6 = "linear";

 string str7(str6, 3, 3);

 cout << "str1 is: " << str1 << endl;

 cout << "str2 is: " << str2 << endl;

 cout << "str3 is: " << str3 << endl;

 cout << "str4 is: " << str4 << endl;

 cout << "str5 is: " << str5 << endl;

 cout << "str6 is: " << str6 << endl;

 cout << "str7 is: " << str7 << endl;

 return 0;

 }

 with output as follows:

1) In Code 64:

 string objects are created in a similar manner as declaring variables, but instead of using

built-in data types, such as int or double, the keyword string is used.

 each string, except the first one (str1), has been initialised explicitly.

 no explicit string is used to initialize str1, so it’s initialized automatically with no characters

at all. These strings are referred to as “empty strings”.

 Because the first character in a string is designated as position 0, not 1, the character position

of D in the string Hot Dog, for example, is position 4, as shown below:

String Input and Output

1) 3 main methods

 cout

 cin: input method that stops reading string input when white space (any combination of

blank spaces, tabs, or new lines) is encountered.

 getline(cin,strObj): input method that inputs all characters entered, stores them in strObj , and

stops accepting characters when it receives a newline character (‘\n’) i. e. when we hit Enter.

2) because a blank space and other white space characters terminate a cin extraction operation,

cin’s usefulness for entering string data is restricted; therefore, getline() is used when we
have a sentence.

3) Code 65:

 #include<iostream>
 #include<string>
 using namespace std;
 int main()
 {
 string message; // declaring a string object

 cout << "Enter a string:\n";
 cin >> message;

 cout << "The string just entered is: \n"
 << message << endl;

 return 0;
 }

gives output

when given input “Universiti Kebangsaan Malaysia”.

4) Code 66:

 #include<iostream>
 #include<string>
 using namespace std;
 int main()
 {
 string message; // declaring a string object

 cout << "Enter a string:\n";
 getline(cin,message);

 cout << "The string just entered is: \n"
 << message << endl;
 return 0;
 }

gives a correct output

when given input “Universiti Kebangsaan Malaysia”.

5) In its most general form, the getline() method has the following syntax:

getline(cin,strObj,terminatingChar)

 here, the third argument, terminatingChar, is an optional character constant, or variable,
specifying the terminating character.

 if it is omitted when getline() is called (as in Code 66), the default terminating character is

the newline (‘\n’) character, i. e. when we hit Enter.

6) The phantom newline character.

 seemingly strange results can happen when the cin and getline() method are used together

to accept data or when cin is used by itself to accept characters.

 Code 67:

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 int value;

 string message;

 cout << "Enter a number: ";

 cin >> value;

 cout << "The number entered is:\n"

 << value << endl;

 cout << "Enter text:\n";

 getline(cin,message);

 cout << "The text entered is: \n"

 << message << endl;
 return 0;

 }

 Below is the output that appears immediately when 26 is entered:

 Notice that in entering a number as prompted, we type the number 26 and press the Enter
key.

 The next input statement, which is a call to getline(), picks up the code for the Enter key
as the next character and terminates any further input.

 Therefore, no text is accepted in response to the prompt Enter text:

 One of the ways to solve this issue is by placing cin.ignore() after the cin (Code 68):

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 int value;

 string message;

 cout << "Enter a number: ";

 cin >> value;

 cin.ignore();

 cout << "The number entered is:\n"

 << value << endl;

 cout << "Enter text:\n";

 getline(cin,message);

 cout << "The text entered is: \n"

 << message << endl;

 return 0;

 }

which gives the output that we expected:

 Another solution, which is preferred, is to avoid mixing cin with getline() inputs in the
same program.

String processing
1) Strings can be manipulated by using:

 string class methods, or

 character-at-a-time methods (character manipulation methods).

2) The most commonly used string classs method are shown below:

7) From all the methods above, one of the most commonly used is length(). It returns the

number of characters in the string, which is referred to as the string’s length.

8) For example, if the string referenced by str contains the value “Have a good day.”, the value

returned by the call str.length() is 16 (the quotation marks aren’t considered part of the

string).

9) Two string expressions can be compared for equality

 each character in a string is stored in binary with the ASCII or Unicode code,

 a blank is less than all letters and numbers,

 letters of the alphabet are stored in order from A to Z,

 digits are stored in order from 0 to 9,

 digits are less than uppercase characters, which are followed by lowercase characters.

Therefore, uppercase characters are mathematically less than lowercase characters.

 when two strings are compared, their characters are compared a pair at a time (both first

characters, then both second characters, and so on). If no differences are found, the strings

are equal; if a difference is found, the string with the first lower character is considered the

smaller string.

10) Here are some examples:

11) Code 69: Use of length() and several relational expressions:

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 string str1 = "Hello";

 string str2 = "Hello there";

 cout << "str1 is: " << str1 << endl;

 cout << "The number of characters in str1 is "

 << str1.length() << endl << endl;

 cout << "str2 is: " << str2 << endl;

 cout << "The number of characters in str2 is "

 << str2.length() << endl << endl;

 if (str1 < str2)

 cout << str1 << " is less than " << str2 << endl << endl;

 else if (str1 == str2)

 cout << str1 << " is equal to " << str2 << endl << endl;

 else

 cout << str1 << " is greater than " << str2 << endl << endl;

 str1 = str1 + " there world!";

 cout << "After concatenation, str1 contains the characters: "

 << str1 << endl;

 cout << "The length of this string is "

 << str1.length() << endl;

 return 0;

 }

with output

12) Code 70: Use of at() to retrieve separate characters in a string for counting vowels:

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 string str = "Counting the number of vowels";

 int n = str.length();

 int vowelCount = 0;

 for (int i=0; i<n; i++)

 {

 switch(str.at(i))

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 vowelCount++;

 }

 }

 cout << "The string: " << str << endl

 << "has " << vowelCount << " vowels." << endl;

 return 0;

 }

which gives output

13) Here, the method at() in the switch statement retrieves the character at position i in the

string. This character is then compared with five different character values.

14) The switch statement uses the fact that selected cases “drop through” in the absence of break

statement. Therefore, all selected cases result in an increment to vowelCount.

15) Note also that we use the method length()to find the number of characters in the string.

16) Code 71: Inserting and replacing characters in a string

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 string str = "This cannot be";

 cout << "The original string is: " << str << endl

 << " and has " << str.length() << " characters." << endl;

 // insert characters

 str.insert(5,"I know ");

 cout << "The string, after insertion, is: " << str << endl

 << " and has " << str.length() << " characters." << endl;

 // replace characters

 str.replace(12, 6, "to");

 cout << "The string, after replacement, is: " << str << endl

 << " and has " << str.length() << " characters." << endl;

 // append characters

 str = str + " correct";

 cout << "The string, after appending, is: " << str << endl

 << " and has " << str.length() << " characters." << endl;

 return 0;

 }

which gives output

17) Code 72: Locate specific characters in a string and create substrings (a substring is any

sequence of characters contained in the original string)

 #include<iostream>

 #include<string>

 using namespace std;

 int main()

 {

 string str = "LINEAR PROGRAMMING THEORY";

 string s1, s2, s3;

 int j, k;

 cout << "The original string is " << str << endl;

 j = str.find('I');

 cout << " The first position of an 'i' is " << j << endl;

 k = str.find('I',(j+1));

 cout << " The next position of an 'i' is " << k << endl;

 j = str.find("THEORY");

 cout << " The first location of \"THEORY\" is " << j << endl;

 k = str.find("ING");

 cout << " The first index of \"ING\" is " << k << endl;

 // now extract three substrings

 s1 = str.substr(2,5);

 s2 = str.substr(19,3);

 s3 = str.substr(6,8);

 cout << "The substrings extracted are: " << endl

 << " " << s1 + s2+ s3 << endl;

 return 0;

 }

which produces output:

18) From the code above, it is clear that characters and sequences of characters can be located and

extracted from a string with string class methods, which are find() and substr(),

respectively.

19) The find() method is character-sensitive: replacing ‘I’ with ‘i’ will give different output.

Character Manipulation Methods

1) The header files string and cctype must be included in any program using these methods.

2) Examples of character manipulation methods:

3) Because all the methods above return a non-zero integer (interprated as a Boolean true value)

when the character meets the condition and a zero integer (interprated as a Boolean false

value) when the condition isn’t met, these methods are typically used in an if statement.

4) The methods can also be used to process elements of C-strings (next topic).

5) Code 73: counting the number of letters, digits, and other characters in a string:

 #include<iostream>

 #include<string>

 #include<cctype>

 using namespace std;

 int main()

 {

 string str = "This -123/ is 567 A ?<6245> Test!";

 char nextChar;

 int nLetters = 0, nDigits = 0, nOthers = 0;

 // check each character in the string

 for (int i=0; i<str.length(); i++)

 {

 nextChar = str.at(i);

 if(isalpha(nextChar))

 nLetters++;

 else if (isdigit(nextChar))

 nDigits++;

 else

 nOthers++;

 }

 cout << "The original string is: " << str

 << "\nThis string contains " << str.length()

 << " characters," << " which consist of" << endl

 << " " << nLetters << " letters" << endl

 << " " << nDigits << " digits" << endl

 << " " << nOthers << " other characters." << endl;

 return 0;

 }

which gives output

6) Code 74:

 #include<iostream>

 #include<string>

 #include<cctype>

 using namespace std;

 int main()

 {

 string str;

 cout << "Type in any sequence of characters: ";

 getline(cin, str);

 // cycle through all elements of the string

 for (int i=0; i<str.length(); i++)

 str[i] = toupper(str[i]);

 cout << "The characters just entered, in uppercase, are: "

 << str << endl;

 return 0;

 }

which gives output

when given input “this is a test of 12345”.

7) In the program above:

 the method length() is used to determine the end of the string.

 each element is accessed by using the array subscript notation str[i] rather than the at()

method (they are interchangeable).

 the number 12345 is not changed since the method toupper() only alter lowercase

characters and ignore other characters.

8) Other topics (but not covered in this course):

 exception handling

 exceptions and file checking

 input data validation

II) C-STRING (string as character arrays)

Background

1. The string class (from previous topic) is a newer way to creating/using strings.

2. Using an array of characters to create a string (called as C-string/character string) is actually the

original approach in C++.

3. In this approach, the array of character is terminated by a special end-of-string marker, called

the NULL character, represented by the escape sequence ‘\0’.

4. Creating a C-string:
 char test[5] = “abcd”;

 char test[] = “abcd”;

 char test[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘\0’};

 char test[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘\0’};

5. When a string (or string literal) is used for initialisation as in the first and second examples, the

compiler automatically supplies the NULL character to the array.

6. Without the ‘\0’ in the third and fourth examples, test will just be a normal array of

characters, not a string.

7. Because it is an array, a C-string can be input, manipulated, or output by using standard array-

handling techniques, including subscript and pointer notation.

C-String Input and Output

1. These processes require standard input and output streams: cin and cout, and other class

method defined by the iostream library.

2. For both

 character-by-character

 complete C-string

3. Amongst the string and character I/O methods are:

4. The methods cin.getline(), cin.get(), and cin.peek() are provided for input. They are

not the same as the methods with the same names defined for the string class.

5. The character output functions put() and putback(), however are the same as those for the

string class.

6. Code 75: Using cin.getline and cout to input and output a string:

 #include <iostream>

 using namespace std;

 int main()

 {

 const int MAXCHARS = 81;

 char message[MAXCHARS]; // an array of chars with enough storage

 // for a complete string (line)

 cout << "Enter a string:\n";

 cin.getline(message,MAXCHARS,'\n');

 cout << "The string just entered is:\n"

 << message << endl;

 return 0;

 }

which gives output

when supplied with input “This is a test input of a string of characters”

7. In the code above:

 cin.getline() method continuously accepts and stores characters typed at the keyboard

into the character array named message until 80 characters are entered (the 81st character is

then used to store the end-of string NULL character, ‘\0’) or the Enter key is detected.

 Pressing the Enter key generates a newline character, ‘\n’ which cin.getline() interprets

as the end-of-line entry.

 All the characters cin.getline()encounters, except the newline character, are stored in the

message array. Before returning, cin.getline()appends a NULL character, ‘\0’, to the

stored set of characters, as shown below.

 The cin object can’t be used in place of cin.getline() for C-string input because it stops

reading characters when it encounters a blank space or a newline character.

 The cin.getline() method has this syntax:

 cin.getline(str, terminatingLength, terminatingChar)

 The third input, terminatingChar, is optional. If it is omitted, the default terminating

character is the newline (‘\n’) character.

 Interestingly, we can display the whole array of characters by using cout without a for

loop.

C-String Processing

1. C-string can be manipulated with standard library functions, or as subscripted array variables

(pointers can also be used).

2. For now, concentrate on processing a C-string in a character-by-character fashion with

subscripts. The library functions are available for use, but will be discussed soon.

3. Code 76: copying the contents of a C-string to another C-string

 #include <iostream>

 using namespace std;

 void strcopy(char [], char []); // function prototype

 int main()

 {

 const int MAXCHARS = 81;

 char str1[MAXCHARS], str2[MAXCHARS];

 cout << "Enter a sentence: " ;

 cin.getline(str1,MAXCHARS);

 strcopy(str1,str2); // pass two array addresses

 cout << str2 << endl;

 return 0;

 }

 void strcopy(char s1[], char s2[])

 {

 int i = 0;

 while (s1[i] != '\0')

 {

 s2[i] = s1[i];

 i++;

 }

 s2[i] = '\0';

 }

which gives output

4. The code above can actually be shortened considerably and written more compactly.

5. However, it does illustrates the main feature of C-string manipulation:

 accesing array elements by using subscripts (can also use pointers)

 using the end-of-string NULL character to determine when to stop processing.

6. Character-by-character input

 the purpose is to use cin.get() to accept a string one character at a time.

 Code 77:

 #include <iostream>

 using namespace std;

 int main()

 {

 const int MAXCHARS = 81;

 char str[MAXCHARS], c;

 cout << "Enter a sentence: \n";

 int i=0;

 while(i<MAXCHARS && (c=cin.get()) !='\n')

 {

 str[i]=c;

 i++;

 }

 str[i] = '\0';

 cout << "The sentence just entered is:\n";

 cout << str << endl;

 return 0;

 }

which gives output

 In this code above:

 each entered character is stored correctly in the array, provided the number of characters

entered is less than 81 and the character returned by cin.get() isn’t the newline

character.

 The parentheses surrounding the expression c = cin.get() are necessary to assign the

character returned by cin.get() to the variable c before comparing it with the newline

escape sequence.

C-string manipulation functions

1) The declarations for these functions are in the standard header file cstring and must be included

in a C++ program before the functions are called.

2) Below is the list of the more common C-string library functions, which are called in the same

manner as all C++ functions.

3) The first four functions listed above are used most often.

4) For example, in the function call strcpy(str1 “Hello World!”), the source string literal

“Hello World!” is copied into the destination C-string variable str1. However it is the

programmer’s responsibility to ensure that str1 is large enough to contain the source C-string.

5) The function strlen() returns the number of characters in its C-string parameter but doesn’t

include the terminating NULL character in the count. For example, the value returned by the

function call strlen(“Hello World!”) is 12.

Character manipulation functions

1) In addition to C-string manipulation functions, all C++ compilers include the character-handling

functions.

2) These functions are exactly the same as the ones used to manipulate characters from string

objects in string class discussed in previous topic.

3) Note that we need the header files string and cctype to use this function.

Other topics (but not covered in this course):

 Conversion Functions: used to convert C-strings to and from integer and double-precision

data types.

 C-String Definitions and Pointer Arrays

