
Computer programming (STQS1313)

Sem 2, Session 2020/2021

Notes - Functions/modules (building blocks)

1) Introduction to function

 C++ program is a collection of functions/modules/building blocks.

 The programs that you have written packed all programming instructions into one

function.

 This technique is good only for short programs.

 It is not practical for long codes → for large programs, we need to break the problem

into manageable pieces.

 Eg: a car,

 each major car component can be compared to a function.

 the engine, transmission, and other modules know only their inputs and outputs

 the driver doesn’t need to know the internal operation of the modules

2) Why do we use functions?

 can focus on a specific function at one time (to construct/write, to debug, to perfect it)

 different people can work on different functions simultaneously (but they have to know

the details (type, input, output etc) of their functions)

 we only need to write the function once in the code although it is going to be used many

times (you are going to see this once you learn arrays/vectors/matrices).

 Enhance a program’s readability, because it reduces the complexity of the main function.

3) Types of function

 predefined functions: need libraries such as the cmath

 user-defined functions (value-returning functions and void functions): because C++

doesn’t know every possible functions that you need → need to write your own

functions.

4) How to use a function

 three components: function declaration (prototype), function definition (function

header and body), function call

 Writing function declaration (prototype)

 Can be placed within the main function, or before or after the #include<>. Usually

we put it after the include<>.

 gives information on function’s/output’s type, function’s name,

parameters/arguments’ names and types, number of parameters. Don’t forget the

semi colon.

 Syntax: returnDataType functionName(list or argument data types);

 Example:

 int addfun(int x, int y);

 double multfun(double x, double y);

 void display(double a, double b);

 void printline(); ← function with empty parameter list

 Writing function definition
 Can be placed before or after the main function. Usually after the main function.

 Two main parts: function header and function body

 The first line is the function header. It is similar to the function declaration/prototype

except that it has no semi colon.

 The variables are called formal parameters.

 Writing function call

 needs to be placed in the main function

 Syntax: functionName(list or actual parameters);

 Note, now it is the actual parameters.

5) Example of full function code to calculate the sum of two numbers:

#include<iostream>
using namespace std;
int addfun(int x, int y); // (1) Function Prototype/Declaration
int main()
{

int a, b, c;
a = 1;
b = 2;
c = addfun(a, b); // (3) Function call

 cout << "The sum of the two numbers is: " << c << endl;
return 0;

}
// (2) Function definition

int addfun(int x, int y) // Function header
{

 // Function body

 int z;

z = x + y;
return z;

}
 Note: the value of the actual parameters a and b (1 and 2) are passed to the formal

 parameters: x and y (this is called pass by value).

6) Example of full function code to find the maximum of two numbers:

#include<iostream>

using namespace std;

int findMax(int, int); // (1) Function Prototype/Declaration

int main()

{

 int x, y, z;

 cout << "Please enter first number: ";

 cin >> x;

 cout << "\nPlease enter second number: ";

 cin >> y;

 z = findMax(x,y); // (3) Function call

 cout << "\nThe larger number is " << z << endl;

 return 0;

}

// (2) Function definition

int findMax(int a, int b) // Function header

{

// Function body

 int c;

 if (a>b)

 c = a;

 else

 c = b;

 return c;

}

 Note: the value of the actual parameters x and y are passed to the formal

 parameters: a and b (pass by value).

7) Functions usually return a single value only → returning multiple values will be covered in

the pass by reference.

8) What can be done to the output of a function?

 save the value (as shown above): c = addfun(a, b);. We have seen this in our previous

programs.

 print the value: cout << "The sum of the two numbers is " << addfun(a, b);.

For example:

#include<iostream>
using namespace std;
int addfun(int x, int y);
int main()
{

int a, b;
a = 1;
b = 2;

 cout << "The sum of the two numbers is: " << addfun(a,b) << endl;
return 0;

}

int addfun(int x, int y)
{

 int z;

 z = x + y;
return z;

}

 where we have removed c in the main function since it is not needed.

 use the value in some calculation: c = 2*addfun(a, b);. For example:

#include<iostream>
using namespace std;
int addfun(int x, int y);
int main()
{

int a, b, c;
a = 1;
b = 2;

c = 2*addfun(a,b);
 cout << "The sum of the two numbers when doubled is: " << c << endl;

return 0;
}

int addfun(int x, int y)
{

 int z;

 z = x + y;

return z;
}

9) Two types of user-defined functions

 value-returning functions. We have seen this in all previous programs where each

called function returns a value to the main function.

 void functions. Here, the called function will not return any value to the main function.

 Example (Code 16)

#include<iostream>

using namespace std;

void addFun(int, int); // (1) Function Prototype/Declaration

int main()

{

 int a, b;

 a = 1;

 b = 2;

addFun(a,b); // (3) Function call

 return 0;

}

// (2) Function definition

void addFun(int x, int y) // Function header

{

 // Function body

 int z;

z = x + y;
 cout << "\nThe sum of the two numbers is " << z << endl;

}

 Note that the function call does not have a variable c as a placeholder to hold the

returned value from the function, since there is no value returned by the function at

the first place.

 Note also that the command to print the summation is now placed in the void

function, not in the main function.

10) Functions with empty parameter lists.

 Example (Code 17)

#include<iostream>

using namespace std;

// void function = no return value, 2) empty parameter list = no input

void printLine();

int main()

{

 printLine(); // Function call

 cout << "Fakulti Sains dan Teknologi" << endl;

 printLine(); // Function call

 return 0;

}

void printLine()

{

 cout << "===========================" << endl;

}

 Note that the void function with empty parameter list named printLine is used twice in

the program.

 Example (Code 17)

#include<iostream>

using namespace std;

void printLine();

void printLine2();

int main()

{

 printLine();

 cout << "Fakulti Sains dan Teknologi" << endl;

 printLine2();

 return 0;

}

void printLine()

{

 cout << "===========================" << endl;

}

void printLine2()

{

 cout << "***************************" << endl;

}

 Note that there are two void functions with empty parameter list named printLine and

printLine2 used in the program.

11) Local variable and global variable

 variable defined in a function is local:

 can be used and changed in that particular function only

 not accessible to other functions

 that’s why we have separate declaration, and need to return value.

 Example (see Code 19b)

#include<iostream>

using namespace std;

void myFun(); // void function with empty argument

int main()

{

 int a;

 a = 3;

 cout << "The value of a in main() is " << a << endl;

 myFun();

 cout << "The value of a in main() after changed by myFun() is "

 << a << endl;

 return 0;

}

void myFun()

{

 int a;

 a = 2;

 cout << "The value of a in myFun() is " << a << endl;

}

 global variable is defined outside any function → can be used and changed in any

function.

 Example of global variable: See Codes 20, 21 and 22.

#include<iostream>

using namespace std;

void myFun(); // void function with no argument

int a=1; // global variable

int main()

{

 cout << "The value of a is " << a << endl;

 a = 3;

 cout << "The value of a is " << a << endl;

 myFun();

 cout << "The value of a is " << a << endl;

 return 0;

}

void myFun()

{

 a = 2;

 cout << "The value of a is " << a << endl;

}

12) Misuse of global variables

 It’s possible to make all variables global.

 But DO NOT DO THIS, because it could be disastrous for large programs, where there

are a lot of variables, and user-defined functions → you might not reliase which values

are controlled globally.

13) Scope resolution operator

 when the name of a variable is declared twice: locally and globally.

 Here, the local variable of a function name takes precedence over the global variable in

its function.

 we can still access the global variable by using the scope resolution operator ::, placed

immediately before the variable name.

 Example (Code 23)

#include<iostream>

using namespace std;

int a = 1; // declared as global variable

int main()

{

 int a = 2; // declared as local variable

 cout << "The value of a is " << a << endl;

 return 0;

}

 Example (Code 24)

#include<iostream>

using namespace std;

int a = 1; // declared as global variable

int main()

{

 int a = 2; // declared as local variable

 cout << "The local value of num is " << a << endl; // local

 cout << "The global value of num is " << ::a << endl; // global

 return 0;

}

14) Stub function

 a fake/dummy function

 created because you haven’t finalised/completed writing your function (definition)

 used as placeholder for the final function until it’s completed

 minimum requirement: a stub function can be compiled and linked to the calling

module/code/function.

 Example: Code 25

15) Function overloading and function templates: please read.

16) Returning a single value

 Typical function: the called function receives values from its calling function, and

returns at most one value (of course the function will do some manipulation on the

values before returning it).

 This is called pass by value.

17) Returning multiple values

 can be done by passing the variable’s address in the calling function to the called

functions.

 This will allow the called function to use and change the value of variables defined in

the calling function.

 Passing addresses is referred to as pass by reference.

 Related topic: pointer.

18) Pass by reference

 method: call a function, and pass an address of a variable.

 How to pass: use & operator at function prototype and function header.

 &: “the address of”

 Take a look at Code27:

#include<iostream>

using namespace std;

void newval(double&,double&); // (1) Function declaration

int main()

{

 double x, y;

 cout << "Please enter two numbers: ";

 cin >> x >> y;

 cout << "The value in x is: " << x << endl

 << "The value in y is: " << y << endl;

 newval(x,y); // (3) Function call

 cout << endl;

 cout << "The value in x is: " << x << endl

 << "The value in y is: " << y << endl;

 return 0;

}

void newval(double& a,double& b) // (2) Function definition

{

 a = 2; // x

 b = 1; // y

}

 Function header

void newval(double& a, double& b)

 “a is a reference parameter used to store the address of a double-precision

value”, and similarly “b is a reference parameter used to store the address of a

double-precision value”;

 Function call

newval(x,y)

 connects the arguments used in the function call of the main function, x and y, and

the parameters used in the header of the newval function, a and b.

 The values in the arguments x and y can now be altered from within by using the

reference parameters a and b.

 The parameters a and b don’t store copies of the values in x and y; instead, they

access the locations in memory set aside for these two arguments.

 The value of more than one variable is affected, so the function can’t be written as a pass

by value function (that only returns a single value).

 Take a look at another example (Code 28):

 #include<iostream>

using namespace std;

void calc(double, double, double&, double&); // (1) Function declaration

int main()

{

 double x, y, sum, prod;

 cout << "Enter two numbers: ";

 cin >> x >> y;

 calc(x, y, sum, prod); // (3) Function call

cout << "\nThe sum of the numbers is: " << sum << endl;

 cout << "The product of the numbers is: " << prod << endl;

 return 0;

}

// (2) Function definition

void calc(double a, double b, double& m, double& n)

{

 m = a + b;

 n = a*b;

}

 In main(), the calc() function is called with four arguments: x, y, sum, and prod. As

required, these arguments agree in number and data type with the parameters declared by

calc(). Of the four arguments passed, only x and y have been assigned values when the

call to calc() is made. The remaining two arguments, sum, and prod, haven’t been

initialized and are used to receive values back from calc().

 Depending on the compiler used, these arguments initially contain zeros or “garbage”

values.

Exercises

1) Write a function that returns the smaller value between x, y

2) Modify question 2 so that the value of x and y are entered when the program is running.

3) Modify question 2 so that we can repeat it for n times (determined by user, for example, n=3).

4) Modify question 2 to determine the smallest between 3 values.

5) Write parameter declarations for the following

a) A parameter named amount that will be a reference to a double-precision value.

b) A parameter named price that will be a reference to a double-precision number.

c) A parameter named minutes that will be a reference to an integer number.

d) A parameter named key that will be a reference to a character.

e) A parameter named yield that will be a reference to a double-precision number.

6) Using reference parameters, write a C++ program that contains a function named time() to

convert the passed number of seconds into an equivalent number of minutes and seconds.

